Increasing and decreasing functions
Summary
- Given: a real-valued function of a real variable, \(f: A→B\) where \(A⊆R\) , \( B⊆R\)
- We say that \(f\) is
- increasing if \(f\left( x_1 \right)≤f(x_2)\) for all \(x_1,x_2∈A, x_1<x_2\)
- strictly increasing if \(f\left( x_1 \right)<f(x_2)\) for all \(x_1,x_2∈A, x_1<x_2\)
- decreasing if \(f\left( x_1 \right)≥f(x_2)\) for all \(x_1,x_2∈A, x_1<x_2\)
- strictly decreasing if \(f\left( x_1 \right)>f(x_2)\) for all \(x_1,x_2∈A, x_1<x_2\)