Increasing and decreasing functions

Summary

  • Given: a real-valued function of a real variable, \(f: A→B\) where \(A⊆R\) , \( B⊆R\)
  • We say that \(f\) is
    • increasing if \(f\left( x_1 \right)≤f(x_2)\) for all \(x_1,x_2∈A, x_1<x_2\)
    • strictly increasing if \(f\left( x_1 \right)<f(x_2)\) for all \(x_1,x_2∈A, x_1<x_2\)
    • decreasing if \(f\left( x_1 \right)≥f(x_2)\) for all \(x_1,x_2∈A, x_1<x_2\)
    • strictly decreasing if \(f\left( x_1 \right)>f(x_2)\) for all \(x_1,x_2∈A, x_1<x_2\)