Processing math: 1%

Limit laws

Summary

  • For all laws, c is a constant and

lim

  • Uniqueness of limit. If

\lim_{x→x_0}f(x)

  • exists, it is unique.
  • Limit of a constant.

\lim_{x→x_0}c=c

  • Limit of x

\lim_{x→x_0}x=x_0

  • Addition law

\lim_{x→x_0}\left( f\left( x \right)+g\left( x \right) \right)=L_1+L_2

  • Subtraction law

\lim_{x→x_0}\left( f\left( x \right)-g\left( x \right) \right)=L_1-L_2

  • Constant law

\lim_{x→x_0}cf(x)=cL_1

  • Multiplication law

\lim_{x→x_0}(f(x)⋅g(x))=L_1⋅L_2

  • Division law). If L_2≠0 ,

\lim_{x→x_0} \frac{f\left( x \right)}{g\left( x \right)}= \frac{L_1}{L_2}

  • Positive power law

\lim_{x→x_0}{\left( f\left( x \right) \right)}^n=L_1^n

  • Negative power law. If n is a positive integer and L_1≠0 then

\lim_{x→x_0}{\left( f\left( x \right) \right)}^{-n}=L_1^{-n}

  • n’th root law. If n is a positive integer and L_1>0 then

\lim_{x→x_0}\sqrt[n]{f(x)}=\sqrt[n]{L_1}

  • Squeeze or sandwich law 1. If f(x)≤g(x)≤h(x) for all x in an open interval (a,b) that contains x_0 except possibly at x=x_0 and

\lim_{x→x_0}f\left( x \right)=L and \lim_{x→x_0}h(x)=L

  • then

\lim_{x→x_0}g(x)=L

  • Squeeze or sandwich law 2. If f(x)=g(x) for all x in an open interval (a,b) that contains x_0 except possibly at x=x_0 then

\lim_{x→x_0}f(x)=\lim_{x→x_0}g(x)

  • Composition law. g:A→B , f:B→C and f∘g:A→C is the composition, (f∘g)(x)=f(g(x)) . If

\lim_{x→x_0}g(x)=L

  • and f is continuous at u=L then

\lim_{x→x_0}f(g(x))=f(L)

  • Change of variables. g:A→B , f:B→C and f∘g:A→C is the composition, (f∘g)(x)=f\left( g\left( x \right) \right) and

\lim_{x→x_0}g(x)=u_0

  • If g does not take the value u_0 in an open interval (a,b) containing x_0 except possibly at x_0 or f is continuous at u=u_0 then

\lim_{x→x_0}f(g(x))=\lim_{u→u_0}f(u)