Limit laws
Summary
- For all laws, c is a constant and
lim
- Uniqueness of limit. If
\lim_{x→x_0}f(x)
- exists, it is unique.
- Limit of a constant.
\lim_{x→x_0}c=c
- Limit of x
\lim_{x→x_0}x=x_0
- Addition law
\lim_{x→x_0}\left( f\left( x \right)+g\left( x \right) \right)=L_1+L_2
- Subtraction law
\lim_{x→x_0}\left( f\left( x \right)-g\left( x \right) \right)=L_1-L_2
- Constant law
\lim_{x→x_0}cf(x)=cL_1
- Multiplication law
\lim_{x→x_0}(f(x)⋅g(x))=L_1⋅L_2
- Division law). If L_2≠0 ,
\lim_{x→x_0} \frac{f\left( x \right)}{g\left( x \right)}= \frac{L_1}{L_2}
- Positive power law
\lim_{x→x_0}{\left( f\left( x \right) \right)}^n=L_1^n
- Negative power law. If n is a positive integer and L_1≠0 then
\lim_{x→x_0}{\left( f\left( x \right) \right)}^{-n}=L_1^{-n}
- n’th root law. If n is a positive integer and L_1>0 then
\lim_{x→x_0}\sqrt[n]{f(x)}=\sqrt[n]{L_1}
- Squeeze or sandwich law 1. If f(x)≤g(x)≤h(x) for all x in an open interval (a,b) that contains x_0 except possibly at x=x_0 and
\lim_{x→x_0}f\left( x \right)=L and \lim_{x→x_0}h(x)=L
- then
\lim_{x→x_0}g(x)=L
- Squeeze or sandwich law 2. If f(x)=g(x) for all x in an open interval (a,b) that contains x_0 except possibly at x=x_0 then
\lim_{x→x_0}f(x)=\lim_{x→x_0}g(x)
- Composition law. g:A→B , f:B→C and f∘g:A→C is the composition, (f∘g)(x)=f(g(x)) . If
\lim_{x→x_0}g(x)=L
- and f is continuous at u=L then
\lim_{x→x_0}f(g(x))=f(L)
- Change of variables. g:A→B , f:B→C and f∘g:A→C is the composition, (f∘g)(x)=f\left( g\left( x \right) \right) and
\lim_{x→x_0}g(x)=u_0
- If g does not take the value u_0 in an open interval (a,b) containing x_0 except possibly at x_0 or f is continuous at u=u_0 then
\lim_{x→x_0}f(g(x))=\lim_{u→u_0}f(u)