Limit laws

Summary

  • For all laws, \(c\) is a constant and

\(\lim_{x→x_0}f(x)=L_1and\lim_{x→x_0}g(x)=L_2\)

  • Uniqueness of limit. If

\(\lim_{x→x_0}f(x)\)

  • exists, it is unique.
  • Limit of a constant.

\(\lim_{x→x_0}c=c\)

  • Limit of \(x\)

\(\lim_{x→x_0}x=x_0\)

  • Addition law

\(\lim_{x→x_0}\left( f\left( x \right)+g\left( x \right) \right)=L_1+L_2\)

  • Subtraction law

\(\lim_{x→x_0}\left( f\left( x \right)-g\left( x \right) \right)=L_1-L_2\)

  • Constant law

\(\lim_{x→x_0}cf(x)=cL_1\)

  • Multiplication law

\(\lim_{x→x_0}(f(x)⋅g(x))=L_1⋅L_2\)

  • Division law). If \(L_2≠0\) ,

\(\lim_{x→x_0} \frac{f\left( x \right)}{g\left( x \right)}= \frac{L_1}{L_2}\)

  • Positive power law

\(\lim_{x→x_0}{\left( f\left( x \right) \right)}^n=L_1^n\)

  • Negative power law. If \(n\) is a positive integer and \(L_1≠0\) then

\(\lim_{x→x_0}{\left( f\left( x \right) \right)}^{-n}=L_1^{-n}\)

  • n’th root law. If \(n\) is a positive integer and \(L_1>0\) then

\(\lim_{x→x_0}\sqrt[n]{f(x)}=\sqrt[n]{L_1}\)

  • Squeeze or sandwich law 1. If \(f(x)≤g(x)≤h(x)\) for all \(x\) in an open interval \((a,b)\) that contains \(x_0\) except possibly at \(x=x_0\) and

\(\lim_{x→x_0}f\left( x \right)=L and \lim_{x→x_0}h(x)=L\)

  • then

\(\lim_{x→x_0}g(x)=L\)

  • Squeeze or sandwich law 2. If \(f(x)=g(x)\) for all \(x\) in an open interval \((a,b)\) that contains \(x_0\) except possibly at \(x=x_0\) then

\(\lim_{x→x_0}f(x)=\lim_{x→x_0}g(x)\)

  • Composition law. \(g:A→B\) , \(f:B→C\) and \(f∘g:A→C\) is the composition, \((f∘g)(x)=f(g(x))\) . If

\(\lim_{x→x_0}g(x)=L\)

  • and \(f\) is continuous at \(u=L\) then

\(\lim_{x→x_0}f(g(x))=f(L)\)

  • Change of variables. \(g:A→B\) , \(f:B→C\) and \(f∘g:A→C\) is the composition, \((f∘g)(x)=f\left( g\left( x \right) \right)\) and

\(\lim_{x→x_0}g(x)=u_0\)

  • If \(g\) does not take the value \(u_0\) in an open interval \((a,b)\) containing \(x_0\) except possibly at \(x_0\) or \(f\) is continuous at \(u=u_0\) then

\(\lim_{x→x_0}f(g(x))=\lim_{u→u_0}f(u)\)