Finding antiderivatives
Summary
- Antiderivative of a constant. For any constant k ,
\int{ }kdx=kx+C
- Antiderivative of x .
\int{ }xdx=x^2/2+c
- Antiderivative of power function. If a≠-1 then
\int{ }x^adx= \frac{x^{a+1}}{a+1}+C
- Antiderivative of x^{-1}= \frac{1}{x}
\int{ } \frac{1}{x}dx=ln\left| x \right|+C
- Constant law. For any constant c ,
\int{ }cf\left( x \right)dx=c\int{ }f\left( x \right)dx
- Addition law.
\int{ }\left( f\left( x \right)+g\left( x \right) \right)dx=\int{ }f\left( x \right)dx+\int{ }g\left( x \right)dx