Processing math: 100%

Chain rule for functions of two variables

Summary

2 variables, 1 variable

  • If z=f(x,y) and x=g(t) and y=h(t) then we can create a composite function

z=F(t)=f(g(t),h(t))

  • Example: z=f(x,y)=xey , x=t2 , y=4t+1 then z=F(t)=t2e4t+1
  • If all functions are smooth then

F(t)=fx(x,y)x(t)+fy(x,y)y(t)

  • Example (continued). fx(x,y)=ey=e4t+1 , x(t)=2t , fy(x,y)=xey=t2e4t+1 and y(t)=4 . We have

F(t)=e4t+12t+4t2e4t+1

  • We can confirm that this is correct by differentiating F(t)=t2e4t+1 with respect to t .

Slope of a level curve

  • z=f(x,y)=c for some constant c is a level curve for f(x,y) . It is also an implicit relationship between x and y and y=y(x) .
  • The composite function is z=F(x)=f(x,y(x))=c
  • Taking the derivative of both sides using the chain rule:

ddxF(x)=fx(x,y)1+fy(x,y)y=0

  • or (assuming fy(x,y)0 )

y=fx(x,y)fy(x,y)

2 variables, 2 variables

  • If z=f(x,y) and x=g(s,t) and y=h(s,t) then we can create a composite function

z=F(s,t)=f(g(s,t),h(s,t))

  • Example: z=f(x,y)=xy2 , x=s2+t2 , y=st then

z=F(s,t)=(s2+t2)s2t2=s4t2+s2t4

  • If all functions are smooth then

Fs(s,t)=fx(x,y)xs(s,t)+fy(x,y)ys(s,t)

Ft(s,t)=fx(x,y)xt(s,t)+fy(x,y)yt(s,t)

  • Example (continued). fx(x,y)=y2=s2t2 , fy(x,y)=2xy=2(s2+t2)st , xs(s,t)=2s , xt(s,t)=2t , ys(s,t)=t , yt(s,t)=s . We have

Fs(s,t)=s2t22s+2(s2+t2)stt=4s3t2+2st4

Ft(s,t)=s2t22t+2(s2+t2)sts=4t3s2+2s4t

  • We can confirm that this is correct by differentiating F(s,t)=s4t2+s2t4 with respect to s and t .