Chain rule for functions of two variables
Summary
2 variables, 1 variable
- If z=f(x,y) and x=g(t) and y=h(t) then we can create a composite function
z=F(t)=f(g(t),h(t))
- Example: z=f(x,y)=xey , x=t2 , y=4t+1 then z=F(t)=t2e4t+1
- If all functions are smooth then
F′(t)=f′x(x,y)x′(t)+f′y(x,y)y′(t)
- Example (continued). f′x(x,y)=ey=e4t+1 , x′(t)=2t , f′y(x,y)=xey=t2e4t+1 and y′(t)=4 . We have
F′(t)=e4t+12t+4t2e4t+1
- We can confirm that this is correct by differentiating F(t)=t2e4t+1 with respect to t .
Slope of a level curve
- z=f(x,y)=c for some constant c is a level curve for f(x,y) . It is also an implicit relationship between x and y and y=y(x) .
- The composite function is z=F(x)=f(x,y(x))=c
- Taking the derivative of both sides using the chain rule:
ddxF(x)=f′x(x,y)⋅1+f′y(x,y)⋅y′=0
- or (assuming f′y(x,y)≠0 )
y′=−f′x(x,y)f′y(x,y)
2 variables, 2 variables
- If z=f(x,y) and x=g(s,t) and y=h(s,t) then we can create a composite function
z=F(s,t)=f(g(s,t),h(s,t))
- Example: z=f(x,y)=xy2 , x=s2+t2 , y=st then
z=F(s,t)=(s2+t2)s2t2=s4t2+s2t4
- If all functions are smooth then
F′s(s,t)=f′x(x,y)x′s(s,t)+f′y(x,y)y′s(s,t)
F′t(s,t)=f′x(x,y)x′t(s,t)+f′y(x,y)y′t(s,t)
- Example (continued). f′x(x,y)=y2=s2t2 , f′y(x,y)=2xy=2(s2+t2)st , x′s(s,t)=2s , x′t(s,t)=2t , y′s(s,t)=t , y′t(s,t)=s . We have
F′s(s,t)=s2t22s+2(s2+t2)stt=4s3t2+2st4
F′t(s,t)=s2t22t+2(s2+t2)sts=4t3s2+2s4t
- We can confirm that this is correct by differentiating F(s,t)=s4t2+s2t4 with respect to s and t .