Expected value of a continuous random variable
Summary
Definition
- If XX is a continuous random variable with range [a,b][a,b] and probability density function f(x)f(x) then the expected value of XX is defined as
E(X)=∫baxf(x)dxE(X)=∫baxf(x)dx
- Note: aa may be −∞−∞ and/or bb may be ∞∞ .
Example
- X U[0,1]X U[0,1] . Then E(X)=∫10xf(x)dx=∫10xdx=0.5E(X)=∫10xf(x)dx=∫10xdx=0.5 .
Symmetric pdf
- If the probability density function of XX is symmetric around some constant bb then E(X)=bE(X)=b .
Example
- ZZ is a s t andard normal random variable . The pdf is symmetric around 0 and E(Z)=0E(Z)=0 .