Expected value of a continuous random variable

Summary

Definition

  • If XX is a continuous random variable with range [a,b][a,b] and probability density function f(x)f(x) then the expected value of XX is defined as

E(X)=baxf(x)dxE(X)=baxf(x)dx

  • Note: aa may be and/or bb may be .

Example

  • X U[0,1]X U[0,1] . Then E(X)=10xf(x)dx=10xdx=0.5E(X)=10xf(x)dx=10xdx=0.5 .

Symmetric pdf

  • If the probability density function of XX is symmetric around some constant bb then E(X)=bE(X)=b .

Example

  • ZZ is a s t andard normal random variable . The pdf is symmetric around 0 and E(Z)=0E(Z)=0 .