LRM with an exogenous explanatory variable

Summary

Exogenous variable

  • Given a random sample (y1,x1),,(yn,xn)(y1,x1),,(yn,xn) and the LRM assumption

yi=β1+β2xi+εi,i=1,,nyi=β1+β2xi+εi,i=1,,n

  • From the LRM assumption,

E(yi|xi)=β1+β2xi+E(εi|xi),i=1,,nE(yi|xi)=β1+β2xi+E(εi|xi),i=1,,n

  • We say that the xx -variable is exogenous if

E(εi|xi)=0,i=1,,nE(εi|xi)=0,i=1,,n

  • If the xx -variable is exogenous then

E(yi|xi)=β1+β2xi,i=1,,nE(yi|xi)=β1+β2xi,i=1,,n

  • and

yi=E(yi|xi)+εi,i=1,,nyi=E(yi|xi)+εi,i=1,,n

  • or

εi=yiE(yi|xi),i=1,,nεi=yiE(yi|xi),i=1,,n

Interpreting ββ -parameters

  • The exogeneity assumption

E(yi|xi)=β1+β2xi,i=1,,nE(yi|xi)=β1+β2xi,i=1,,n

  • relates xixi to E(yi|xi)E(yi|xi) for our sample .
  • We also believe that the same relationship exists for arbitrary values of x and y and we write

E(y|x)=β1+β2x

  • From this,

β2=dE(y|x)dx

β1=E(y|x=0)

Main point:

If the x -variable is exogenous, we can interpret β2 in the LRM as the approximate increase in the conditional expectation E(y|x) when x increases by 1 unit. This interpretation is sometimes abbreviated to β2 measure the increase in y when x increases by 1 .