Compound statements and truth tables

Summary

If \(A\) and \(B\) are two predicates, then the following are statements

  • “If \(A\) , then \(B\) ” or “ \(A \implies B\)
  • “If \(B\) , then \(A\) ” or “ \(B \implies A\) ”, the converse of “ \(A \implies B\)
  • \(A\) if and only if \(B\) or \(A \iff B\) , the equivalence of \(A\) and \(B\)
  • \(A\) and \(B\) , the conjunction of \(A\) and \(B\)
  • \(A\) or \(B\) , the disjunction of \(A\) and \(B\)
  • “Not \(A\) ”, the negation of \(A\)