Homoscedasticity, heteroscedasticity and the Gauss-Markov assumptions

Summary

Setup

  • The LRM with random sampling

yi=β1+β2xi+εii=1,,nyi=β1+β2xi+εii=1,,n

  • The explanatory variable is exogenous,

E(εi|xi)=0,i=1,,nE(εi|xi)=0,i=1,,n

Homoscedasticity / heteroscedasticity

  • We say that the error terms are homoscedastic if

Var(εi|xi)=σ2,i=1,,nVar(εi|xi)=σ2,i=1,,n

  • That is, the error terms all have the same variance (conditional on xixi )
  • If the error terms are not homoscedastic we say that they are heteroscedastic .

Gauss-Markov assumptions

  • We say that the Gauss-Markov assumptions are satisfied for the LRM with random sampling if the explanatory variable is exogenous and the error terms are homoscedastic.