Homoscedasticity, heteroscedasticity and the Gauss-Markov assumptions
Summary
Setup
- The LRM with random sampling
yi=β1+β2xi+εii=1,…,nyi=β1+β2xi+εii=1,…,n
- The explanatory variable is exogenous,
E(εi|xi)=0,i=1,…,nE(εi|xi)=0,i=1,…,n
Homoscedasticity / heteroscedasticity
- We say that the error terms are homoscedastic if
Var(εi|xi)=σ2,i=1,…,nVar(εi|xi)=σ2,i=1,…,n
- That is, the error terms all have the same variance (conditional on xixi )
- If the error terms are not homoscedastic we say that they are heteroscedastic .
Gauss-Markov assumptions
- We say that the Gauss-Markov assumptions are satisfied for the LRM with random sampling if the explanatory variable is exogenous and the error terms are homoscedastic.