The log-linear model
Summary
- If
\[E(y_i|x_i)=β_1exp \left( β_2x_{2i}+β_3x_{3i}+…+β_kx_{ki} \right) , i=1,…,n\]
- we can define
\[ε_i= \frac{y_i}{E(y_i|x_i)}\]
- and
\[y_i=β_1exp \left( β_2x_{2i}+β_3x_{3i}+…+β_kx_{ki} \right)ε_i , i=1,…,n\]
- We can transform this into a linear regression model by taking log of both sides:
\[log \left( y_i \right)=log \left( β_1 \right)+β_2x_{2i}+β_3x_{3i}+…+β_kx_{ki}+log \left( ε_i \right) , i=1,…,n\]
- or
\[log \left( y_i \right)=β'_1+β_2x_{2i}+β_3x_{3i}+…+β_kx_{ki}+ε'_i , i=1,…,n\]
- which is a linear model (linear in parameters, not in data).
- For this model
\[β_j= \frac{∂log \left( E\left( y|x \right) \right)}{∂x_j}= \frac{∂E\left( y|x \right)}{∂x_j} \frac{1}{E\left( y|x \right)} , j=2,…,k\]
- \(β_j\) *100 measures, approximately, the percentage increase in \(E\left(y | x \right)\) if we increase \(x_j\) by 1 unit keeping the other explanatory variables constant.