Ramsey’s RESET test
Summary
Ramsey’s RESET (Regression Equation Specification Error Test) test:
\[y_i=β_1+β_2x_{2i}+β_3x_{3i}+…+β_kx_{ki}+ε_i i=1,…,n\]
- Save the fitted values \({\hat{y}}_i\)
- Add the variable \({\hat{y}}_i^2\) to you LRM and re-estimate it:
\[y_i=β_1+β_2x_{2i}+β_3x_{3i}+…+β_kx_{ki}+γ{\hat{y}}_i^2+ε_i i=1,…,n\]
- Test \(H_0:γ=0\) . If rejected, this indicates signs of misspecification, particularly nonlinearity in the data.
It is also possible to add higher order powers, such as \({\hat{y}}_i^3\) to the second regression.