Logarithmic laws for the common logarithm
Summary
Logarithmic identities
- \(log {10}^a=a\) for all \(a\)
- \({10}^{log c}=c\) for \(c>0\)
Notation
- \(log cd\) means \(log \left( cd \right)\) . \(log c/d\) means \(log \left( c/d \right)\)
- \(log c+d\) means \(\left( log c \right)+d\) . To log a sum, write \(log \left( c+d \right)\)
- \(log a^b\) means \(log \left( a^b \right)\) . To take \(log a\) to the power \(b\) , write \({\left( log a \right)}^b\)
Logarithm of products, ratios and powers
- \(log cd=log c+log d\)
- \(log \frac{c}{d}=log c-log d\)
- \(log c^d=dlog c\)