Stationarity
Summary
A time series process y1,…,yTy1,…,yT is called stationary (in the weak sense or in the wide sense) if
- E(yt)=μE(yt)=μ (does not depend on tt )
- Var(yt)=σ2Var(yt)=σ2 (does not depend on tt )
- Cov(yt,yt−s)Cov(yt,yt−s) depends only on ss (but not on tt )
If y1,…,yTy1,…,yT and x1,…,xTx1,…,xT are two stationary processes , then
- cy1,…,cyTcy1,…,cyT is stationary for any constant cc
- y1+x1,…,yT+xTy1+x1,…,yT+xT is stationary