Efficient estimation with AR(1) errors
Summary
Setup
- The linear regression model
\[y_t=β_1+β_2x_t+ε_t , t=1,…,T\]
- All data is stationary
- The explanatory variable is exogenous
- The error terms follow a stationary AR(1) process
\[ε_t=ρε_{t-1}+ν_t , t=1,…,T\]
- where \(ν_t\) is white noise.
The transformed model
- Calculating \(y_t-ρy_{t-1}\) :
\[y_t-ρy_{t-1}=β_1+β_2x_t+ε_t-ρ(β_1+β_2x_{t-1}+ε_{t-1})\]
- or
\[y_t=β_1(1-ρ)+β_2x_t-ρβ_2x_{t-1}+ρy_{t-1}+ν_t\]
- This is a nonlinear ADL(1,1) model where the error terms are white noise .
- All the parameters can be consistently estimated using NLS.