Efficient estimation with AR(1) errors

Summary

Setup

  • The linear regression model

\[y_t=β_1+β_2x_t+ε_t , t=1,…,T\]

  • All data is stationary
  • The explanatory variable is exogenous
  • The error terms follow a stationary AR(1) process

\[ε_t=ρε_{t-1}+ν_t , t=1,…,T\]

  • where \(ν_t\) is white noise.

The transformed model

  • Calculating \(y_t-ρy_{t-1}\) :

\[y_t-ρy_{t-1}=β_1+β_2x_t+ε_t-ρ(β_1+β_2x_{t-1}+ε_{t-1})\]

  • or

\[y_t=β_1(1-ρ)+β_2x_t-ρβ_2x_{t-1}+ρy_{t-1}+ν_t\]

  • This is a nonlinear ADL(1,1) model where the error terms are white noise .
  • All the parameters can be consistently estimated using NLS.