Endogenous variables
Summary
Typo at 0.44 in lecture: the final ββ should be β4β4
Example 1
- True model:
E(xi,2,xi,3,xi,4)=β1+β2xi,2+β3xi,3+β4xi,4,i=1,…,nE(xi,2,xi,3,xi,4)=β1+β2xi,2+β3xi,3+β4xi,4,i=1,…,n
- We assume that
E(xi,2,xi,3,xi,4)=β1+β2xi,2+β3xi,3,i=1,…,nE(xi,2,xi,3,xi,4)=β1+β2xi,2+β3xi,3,i=1,…,n
- and specify
yi=β1+β2xi,2+β3xi,3+εi,i=1,…,nyi=β1+β2xi,2+β3xi,3+εi,i=1,…,n
- If an included variable ( x2x2 or x3)x3) is correlated with the missing variable ( x4x4 ), then it is endogenous
- If an included variable is independent of the missing variable, then it is exogenous
Example 2
- True model: yi,1,yi,2yi,1,yi,2 are determined jointly from:
yi,1=β1+β2xi,2+β3yi,2+εi,i=1,…,nyi,1=β1+β2xi,2+β3yi,2+εi,i=1,…,n
yi,2=γ1+γ2xi,2+γ3yi,1+νi,i=1,…,nyi,2=γ1+γ2xi,2+γ3yi,1+νi,i=1,…,n
- Then
E(xi,2,yi,2)=β1+β2xi,2+β3yi,2,i=1,…,nE(xi,2,yi,2)=β1+β2xi,2+β3yi,2,i=1,…,n
- cannot hold in general.
- If we consider the first equation on its own, then yi,2yi,2 is endogenous.
- xi,2xi,2 will be exogenous if E(εi|xi)=E(νi|xi)=0E(εi|xi)=E(νi|xi)=0
Example 3
- True model:
E(zi,xi)=β1+β2zi,2+β3zi,3E(zi,xi)=β1+β2zi,2+β3zi,3
- where xi,2xi,2 is a measurement of true zi,2zi,2 and xi,3xi,3 is a measurement of true zi,3zi,3 .
- We run yy on x2x2 and x3x3 .
- If a variable has measurement errors, it will be endogenous.
- If a variable does not have measurement errors, it will be exogenous.