Binary choice models, inference

Summary

Binary choice fitted values

  • Given estimates \(b_1,…,b_k\) of \(β_1 ,…,β_k\) in the binary choice model we can calculate \(z\) - values

\[z_i=b_1+b_2x_{i,2}+b_3x_{i,3}+…+b_kx_{i,k} , i=1,…,n\]

  • \(z_i\) is our estimate of \(ζ_i\) .
  • We can find fitted values

\[{\hat{y}}_i=F\left( z_i \right) , i=1,…,n\]

  • which are estimates of \(P\left( y_i=1|x_i \right)\) (we can do out of sample predictions as well).

The \(β\) -parameters

  • In binary choice models

\[ \frac{∂P\left( y=1|x \right)}{∂x_j}=F'\left( ζ \right)β_j , j=2,…,k\]

  • where \(F'\) is the derivative of \(F\) .
  • \(∂P\left( y=1|x \right)/∂x_j\) is estimated using

\[F'\left( z \right)b_j\]

Marginal effects, logit and probit

  • For the logit model

\[F'\left( x \right)= \frac{e^{-x}}{{\left( 1+e^{-x} \right)}^2}\]

  • For the probit model \(F'\) is the probability density function of the standard normal

\[F'\left( x \right)= \frac{1}{\sqrt{2π}}exp \left( - \frac{x^2}{2} \right)\]

The sign of the \(β\) -parameters

\(β_j\) has no immediate interpretation in binary choice models. However, the sign of \(β_j\) can be interpreted:

  • If \(β_j=0\) then \(ζ\) does not depend on \(x_j\) and \(P\left( y_i=1|x \right)\) will not depend on \(x_j\) .
  • If \(β_j>0\) ( \(β_j<0\) ) then \(ζ\) increases (decreases) with \(x_j\) and \(P\left( y_i=1|x \right)\) will increase (decrease) with \(x_j\) .