CDF, cumulative distribution function
Summary
- Given: A (real-valued) random variable \(X\) .
- The cumulative distribution function \(F:R→[0,1]\) is defined as
\[F(x)=P(X≤x)\]
Properties of the CDF function:
- \(F\) is an increasing function
- \(0≤F\left( x \right)≤1\)
- \(\lim_{x→∞} F\left( x \right)=1\)
- \(\lim_{x→-∞} F\left( x \right)=0\)