Expected value of a function of several random variables
Summary
Discrete random variables
- X,YX,Y are two discrete random variables . The range of XX is x1,…,xnx1,…,xn and the range of YY is y1,…,ymy1,…,ym . They have joint pmf f(x,y)f(x,y) and Z=g(X,Y)Z=g(X,Y) for some function gg . Then
E(Z)=n∑i=1m∑j=1g(xi,yj)f(xi,yj)E(Z)=n∑i=1m∑j=1g(xi,yj)f(xi,yj)
Example
- Z=XYZ=XY and f(x,y)f(x,y) is defined by the following table:
E(Z)=2∑i=12∑j=1xiyjf(xi,yj)=1⋅1⋅0.4+1⋅2⋅0.1+2⋅1⋅0.1+2⋅2⋅0.4=1.4E(Z)=2∑i=12∑j=1xiyjf(xi,yj)=1⋅1⋅0.4+1⋅2⋅0.1+2⋅1⋅0.1+2⋅2⋅0.4=1.4
Continuous random variable
- X,YX,Y are two continuous random variables with joint pdf f(x,y)f(x,y) and Z=g(X,Y)Z=g(X,Y) for some function gg . Then
E(Z)=∫∞−∞∫∞−∞g(x,y)f(x,y)dxdyE(Z)=∫∞−∞∫∞−∞g(x,y)f(x,y)dxdy
Example
- f(x,y)=4xyf(x,y)=4xy for 0≤x≤10≤x≤1 and 0≤y≤10≤y≤1 and Z=XYZ=XY . Then
E(Z)=∫10∫10xy⋅4xydxdy=49E(Z)=∫10∫10xy⋅4xydxdy=49