Linear function of several random variables

Summary

Linear function

  • X1,,XnX1,,Xn are nn random variables and g:RnRg:RnR is a linear function of nn variables,

y=g(x1,,xn)=a+b1x1++bnxny=g(x1,,xn)=a+b1x1++bnxn

  • Then we say that

Y=g(X1,,Xn)=a+b1X1++bnXnY=g(X1,,Xn)=a+b1X1++bnXn

  • is a linear function of the nn random variables X1,,XnX1,,Xn .

Expected value of a linear function of nn random variables

  • If Y=a+b1X1++bnXnY=a+b1X1++bnXn then

E(Y)=a+b1E(X1)++bnE(Xn)E(Y)=a+b1E(X1)++bnE(Xn)

  • or, combined,

E(a+b1X1++bnXn)=a+b1E(X1)++bnE(Xn)E(a+b1X1++bnXn)=a+b1E(X1)++bnE(Xn)

  • ( EE goes inside linear functions).

Variance of a linear function of nn independent random variables

  • If X1,,XnX1,,Xn are (mutually) independent then

Var(a+b1X1++bnXn)=b21Var(X1)++b2nVar(Xn)Var(a+b1X1++bnXn)=b21Var(X1)++b2nVar(Xn)

Example

  • X1,,XnX1,,Xn are nn independent random variables with E(Xi)=μE(Xi)=μ and Var(Xi)=σ2Var(Xi)=σ2 for i=1,,ni=1,,n . Then

E(X1++Xn)=E(X1)++E(Xn)=nμE(X1++Xn)=E(X1)++E(Xn)=nμ

Var(X1++Xn)=Var(X1)++Var(Xn)=nσ2Var(X1++Xn)=Var(X1)++Var(Xn)=nσ2