Linear function of several random variables
Summary
Linear function
-
X1,…,Xn
are
n
random variables and
g:Rn→R
is a
linear
function of
n
variables,
y=g(x1,…,xn)=a+b1x1+…+bnxn
Y=g(X1,…,Xn)=a+b1X1+…+bnXn
-
is a linear function of the
n
random variables
X1,…,Xn
.
Expected value of a linear function of
n
random variables
-
If
Y=a+b1X1+…+bnXn
then
E(Y)=a+b1E(X1)+…+bnE(Xn)
E(a+b1X1+…+bnXn)=a+b1E(X1)+…+bnE(Xn)
-
(
E
goes inside linear functions).
Variance of a linear function of
n
independent random variables
-
If
X1,…,Xn
are (mutually) independent then
Var(a+b1X1+…+bnXn)=b21Var(X1)+…+b2nVar(Xn)
Example
-
X1,…,Xn
are
n
independent random variables with
E(Xi)=μ
and
Var(Xi)=σ2
for
i=1,…,n
. Then
E(X1+…+Xn)=E(X1)+…+E(Xn)=nμ
Var(X1+…+Xn)=Var(X1)+…+Var(Xn)=nσ2