Linear function of several random variables
Summary
Linear function
- X1,…,XnX1,…,Xn are nn random variables and g:Rn→Rg:Rn→R is a linear function of nn variables,
y=g(x1,…,xn)=a+b1x1+…+bnxny=g(x1,…,xn)=a+b1x1+…+bnxn
- Then we say that
Y=g(X1,…,Xn)=a+b1X1+…+bnXnY=g(X1,…,Xn)=a+b1X1+…+bnXn
- is a linear function of the nn random variables X1,…,XnX1,…,Xn .
Expected value of a linear function of nn random variables
- If Y=a+b1X1+…+bnXnY=a+b1X1+…+bnXn then
E(Y)=a+b1E(X1)+…+bnE(Xn)E(Y)=a+b1E(X1)+…+bnE(Xn)
- or, combined,
E(a+b1X1+…+bnXn)=a+b1E(X1)+…+bnE(Xn)E(a+b1X1+…+bnXn)=a+b1E(X1)+…+bnE(Xn)
- ( EE goes inside linear functions).
Variance of a linear function of nn independent random variables
- If X1,…,XnX1,…,Xn are (mutually) independent then
Var(a+b1X1+…+bnXn)=b21Var(X1)+…+b2nVar(Xn)Var(a+b1X1+…+bnXn)=b21Var(X1)+…+b2nVar(Xn)
Example
- X1,…,XnX1,…,Xn are nn independent random variables with E(Xi)=μE(Xi)=μ and Var(Xi)=σ2Var(Xi)=σ2 for i=1,…,ni=1,…,n . Then
E(X1+…+Xn)=E(X1)+…+E(Xn)=nμE(X1+…+Xn)=E(X1)+…+E(Xn)=nμ
Var(X1+…+Xn)=Var(X1)+…+Var(Xn)=nσ2Var(X1+…+Xn)=Var(X1)+…+Var(Xn)=nσ2