Covariance, results
Summary
X,Y,Z are random variables and a,b are constants.
- Cov(X,Y)=E(XY)−E(X)E(Y)
- If X and Y are independent then Cov(X,Y)=0 . The opposite is not true.
- If X and Y are normally distributed and Cov(X,Y)=0 then X and Y are independent
- Cov(X,X)=Var(X)
- Cov(X,a)=0
- Cov(X,Y)=Cov(Y,X)
- Cov(X+Y,Z)=Cov(X,Z)+Cov(Y,Z)
- Cov(aX,bY)=abCov(X,Y)
- Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)