Covariance, results
Summary
\(X,Y,Z\) are random variables and \(a,b\) are constants.
- \(Cov(X,Y)=E(XY)-E(X)E(Y)\)
- If \(X\) and \(Y\) are independent then \(Cov(X,Y)=0\) . The opposite is not true.
- If \(X\) and \(Y\) are normally distributed and \(Cov(X,Y)=0\) then \(X\) and \(Y\) are independent
- \(Cov(X,X)=Var(X)\)
- \(Cov(X,a)=0\)
- \(Cov\left( X,Y \right)=Cov(Y,X)\)
- \(Cov(X+Y,Z)=Cov(X,Z)+Cov(Y,Z)\)
- \(Cov(aX,bY)=abCov(X,Y)\)
- \(Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)\)