Conditional variance

Summary

Definition

  • \(X,Y\) are two random variables. Let

\[Z={\left( Y-E\left( X \right) \right)}^2\]

  • We define the conditional variance of \(Y\) given \(X\) as

\[Var\left( X \right)=E\left( X \right)=E\left( X \right)=E\left( X \right)-{\left( E\left( X \right) \right)}^2\]

Law of total variance

\[Var\left( Y \right)=E\left( Var\left( X \right) \right)+Var\left( E\left( X \right) \right)\]