Properties of the sample variance
Summary
- Given an IID random sample x1,x2,...,xnx1,x2,...,xn where E(xi)=μE(xi)=μ , Var(xi)=σ2Var(xi)=σ2 for i=1…ni=1…n , the sample variance
s2=1n−1n∑i=1(xi−ˉx)2s2=1n−1n∑i=1(xi−¯x)2
- has the following property:
E(s2)=σ2E(s2)=σ2
- Given an IID random sample of size nn from N(μ,σ2)N(μ,σ2) we have
(n−1)s2σ2 χ2n−1(n−1)s2σ2 χ2n−1