Consistency
Summary
Given:
- A sample x1,x2,...,xnx1,x2,...,xn
- A statistical model where θθ is an unknown parameter
- An estimator ˆθn=g(x1,…,xn)^θn=g(x1,…,xn)
Definition: consistency
- We may view ˆθ1,ˆθ2,ˆθ3,…^θ1,^θ2,^θ3,… as a sequence of random variables .
- We say that ˆθn^θn is a consistent estimator of θθ if ˆθn^θn converges in probability to θθ ,
plim ˆθn=θplim ^θn=θ
- or
P(|ˆθn−θ|<ε)→1 as n→∞
- for all ε>0 .
Example
- x1,x2,...,xn is an IID random sample where E(xi)=μ and Var(xi)=σ2 . Then ˉxn is a consistent estimator of μ ( the weak law of large numbers ).