Plim-rules
Summary
-
y1,y2,…
is a sequence of random variables such that
plim yn=a
-
z1,z2,…
is a sequence of random variables such that
plim zn=b
-
c,d
are
a constant
s
-
g:R→R
is a function
Then
-
plim (c+dyn)=c+dplim (yn)=c+da
-
plim (g(yn))=g(plim (yn))=g(a)
-
plim (yn+zn)=plim (yn)+plim (zn)=a+b
-
plim (yn⋅zn)=plim (yn)⋅plim (zn)=ab
Example
-
x1,x2,...,xn
is an IID random sample where
E(xi)=μ
and
Var(xi)=σ2
. Then
plim ¯x2n=μ2
-
even though
E(¯x2n)≠μ2
.