Plim-rules
Summary
- y1,y2,…y1,y2,… is a sequence of random variables such that plim yn=aplim yn=a
- z1,z2,…z1,z2,… is a sequence of random variables such that plim zn=bplim zn=b
- c,dc,d are a constant s
- g:R→Rg:R→R is a function
Then
- plim (c+dyn)=c+dplim (yn)=c+daplim (c+dyn)=c+dplim (yn)=c+da
- plim (g(yn))=g(plim (yn))=g(a)plim (g(yn))=g(plim (yn))=g(a)
- plim (yn+zn)=plim (yn)+plim (zn)=a+bplim (yn+zn)=plim (yn)+plim (zn)=a+b
- plim (yn⋅zn)=plim (yn)⋅plim (zn)=abplim (yn⋅zn)=plim (yn)⋅plim (zn)=ab
Example
- x1,x2,...,xnx1,x2,...,xn is an IID random sample where E(xi)=μE(xi)=μ and Var(xi)=σ2Var(xi)=σ2 . Then
plim ˉx2n=μ2plim ¯x2n=μ2
- even though E(ˉx2n)≠μ2E(¯x2n)≠μ2 .