Vector-valued estimator
Summary
- Given:
- A sample x1,x2,...,xn
- A statistical model where θ_1,…,θ_m are unknown parameters
- If {\hat{θ}}_i is an estimator for θ_i for i=1,…,m then we can collect the estimators and unknown parameters in vectors
\hat{θ}=\pmatrix {\hat{θ}_1 \\ \vdots \\ \hat{θ}_m} θ=\pmatrix {θ_1 \\ \vdots \\ θ_m}
- We say that \hat{θ} is an unbiased estimator of θ if
E\left( \hat{θ} \right)=θ
- If {\hat{θ}}_1 and {\hat{θ}}_2 are two unbiased estimators of θ then we say that {\hat{θ}}_1 is more efficient than {\hat{θ}}_2 if
Var\left( {\hat{θ}}_2 \right)-Var\left( {\hat{θ}}_1 \right)
- is positive semi-definite.
- We say that \hat{θ} is a consistent estimator of θ if
\textrm{plim } \hat{θ}=θ
- where
\textrm{plim } \hat{θ} = \pmatrix {\textrm{plim } \hat{θ}_1 \\ \vdots \\ \textrm{plim }\hat{θ}_m}