Processing math: 5%

Vector-valued estimator

Summary

  • Given:
    • A sample x1,x2,...,xn
    • A statistical model where θ_1,…,θ_m are unknown parameters
  • If {\hat{θ}}_i is an estimator for θ_i for i=1,…,m then we can collect the estimators and unknown parameters in vectors

\hat{θ}=\pmatrix {\hat{θ}_1 \\ \vdots \\ \hat{θ}_m} θ=\pmatrix {θ_1 \\ \vdots \\ θ_m}

  • We say that \hat{θ} is an unbiased estimator of θ if

E\left( \hat{θ} \right)=θ

  • If {\hat{θ}}_1 and {\hat{θ}}_2 are two unbiased estimators of θ then we say that {\hat{θ}}_1 is more efficient than {\hat{θ}}_2 if

Var\left( {\hat{θ}}_2 \right)-Var\left( {\hat{θ}}_1 \right)

  • is positive semi-definite.
  • We say that \hat{θ} is a consistent estimator of θ if

\textrm{plim } \hat{θ}=θ

  • where

\textrm{plim } \hat{θ} = \pmatrix {\textrm{plim } \hat{θ}_1 \\ \vdots \\ \textrm{plim }\hat{θ}_m}