Demand for discrete goods
Summary
- Setup:
- Good 1 is discrete (integer)
- \(p_2=1\) , \(p_1x_1+x_2=m\)
- Reservation price: \(r_n\) is the price where you are indifferent between \(x_1=n-1\) and \(x_1=n\)
- With strictly convex preferences: \(r_1>r_2>…\)
- Optimal choice \(x_1\) :
- If \(p_1=r_n\) : \(x_1=n-1\) or \(x_1=n\) (indifferent)
- If \(r_{n+1}<p_1<r_n\) : \(x_1=n\)
- If \(p_1=r_{n+1}\) : \(x_1=n\) or \(x_1=n+1\) (indifferent)
- Optimal choice \(x_1\) :
- \(x_1=n\) if and only if \(r_{n+1}≤p_1≤r_n\)
- Implication for utility function:
- \(p_1=r_n\) Indifferent between \(x_1=n-1\) and \(x_1=n\)
- If \(x_1=n\) then \(x_2=m-r_n⋅n\)
- If \(x_1=n-1\) then \(x_2=m-r_n⋅\left( n-1 \right)\)
- \(u\left( n-1,m-r_n⋅\left( n-1 \right) \right)=u\left( n,m-r_n⋅n \right)\)
- Quasilinear preferences:
- \(u\left( x_1,x_2 \right)=v\left( x_1 \right)+x_2\) where \(v\left( x_1 \right)\) strictly concave
- \(u\left( n-1,m-r_n⋅\left( n-1 \right) \right)=u\left( n,m-r_n⋅n \right)\) im plies
- \(v\left( n-1 \right)+m-r_n⋅\left( n-1 \right)=v\left( n \right)+m-r_n⋅n\) which implies
- \(r_n=v\left( n \right)-v\left( n-1 \right)\)
- Can normalize \(v\) such that \(v\left( 0 \right)=0\)