Consumer surplus, discrete goods

Summary

Consumer’s surplus, discrete good with quasilinear preferences

  • Setup
    • Two goods model
    • Good 1 is discrete (integer)
    • \(p_2=1\) , \(p_1x_1+x_2=m\)
    • Quasilinear preferences \(u\left( x_1,x_2 \right)=v\left( x_1 \right)+x_2\)
    • Strictly convex preferences: \(v\left( x_1 \right)\) concave
  • Optimal choice \(x_1\) :
    • \(x_1=n\) if and only if \(r_{n+1}≤p_1≤r_n\)
  • Deriving \(v\left( n \right)\)
    • \(r_n=v\left( n \right)-v\left( n-1 \right)\)
    • Normalize: \(v\left( 0 \right)=0\)

\[v\left( n \right)=r_1+…+r_n=\sum_{i=1}^{n}{ r_i }\]

  • \(v\left( n \right)\) is called the gross benefit or the gross consumer’s surplus from consuming \(n\) units of good 1
  • If \(x_1=n\) then \(x_2=m-p_1n\) and

\[u\left( n,m-p_1n \right)=v\left( n \right)+m-p_1n\]

  • The consumer’s surplus or net c onsumer’s surplus from consuming \(n\) units of good 1 is defined as

\[CS\left( n \right)=v\left( n \right)-p_1n=\sum_{i=1}^{n}{ r_i }-p_1n\]