Price elasticity of demand for linear demand functions
Summary
Price elasticity of demand: linear demand function
- q=a−bpq=a−bp where a>0,b>0a>0,b>0 are constants and 0≤p≤a/b0≤p≤a/b
- Inverse demand function: p=a/b−q/bp=a/b−q/b for 0≤q≤a0≤q≤a
- Price elasticity of demand
ε=−bpa−bpε=−bpa−bp
- Middle of the demand curve: p=(a/b)/2p=(a/b)/2 , q=a/2q=a/2 we have ε=−1ε=−1
- Top left: demand is elastic ( ε=−∞ε=−∞ at q=0q=0 )
- Lower right: demand is inelastic ( ε=0ε=0 at p=0p=0 )
- Example:
- q=20−2pq=20−2p for 0≤p≤100≤p≤10
- p=10−q/2p=10−q/2 for 0≤q≤200≤q≤20
- ε=−2p20−2p=−p10−pε=−2p20−2p=−p10−p
- |ε|=1|ε|=1 when p=5p=5 ( q=10)q=10)
- |ε|>1|ε|>1 when p>5p>5 ( q<10q<10 )
- |ε|<1|ε|<1 when p<5p<5 ( q<10q<10 )