Marginal revenue
Summary
- The derivative of the revenue function with respect to \(q, R'\left( q \right)\) , is called the marginal revenue ,
\[MR=R'\left( q \right)\]
- Example: price elasticity of demand equal to -1
- \(q=cp^{-1}\) or \(p=cq^{-1}\)
- \(R\left( q \right)=c\) and \(R'\left( q \right)=0\) for all \(q\) .
- Example: linear demand
- \(q\left( p \right)=a-bp\)
- \(R\left( q \right)= \frac{aq}{b}- \frac{q^2}{b}\)
\[MR= \frac{a-2q}{b}\]
- \(MR>0\) if \(q<a/2\) , \(MR=0\) if \(q=a/2\) and \(MR<0\) if \(q>a/2\)