Income elasticity of demand
Summary
Income elasticity
- \(q\left( p,m \right)\) is a given demand function
\[ε_I(p,m)= \frac{dq}{dm}⋅ \frac{m}{q\left( p,m \right)}\]
- is called the income elasticity of demand .
- Example
- \(u\left( x_1,x_2 \right)=x_1x_2 \)
- \(q\left( p,m \right)=m/(2p) \) where \(q\) is the demand for good 1 and \(p\) the price of good 1
\[ε_I\left( p,m \right)= \frac{1}{2p}⋅ \frac{m}{m/(2p)}=1\]
- For small changes in income, \(Δm\) small,
\[ε_I≈ \frac{Δq}{Δm}⋅ \frac{m}{q}= \frac{Δq/q}{Δm/m}\]
- \(ε_I\) is the approximate percentage increase in \(q\) when \(m\) increases by 1% .
Normal, inferior and luxury goods
- We say that a good is
- Normal if \(ε_I\left( p,m \right)>0\)
- Inferior if \(ε_I\left( p,m \right)<0\)
- Luxury if \(ε_I\left( p,m \right)>1\)