Long run, short run and return to scale
Summary
Long run and short run
- Short run: At least one factor of production is fixed
- Long run: All factors of production can be varied
- Example
- Production function: y=f(x1,x2)=100√x1x2y=f(x1,x2)=100√x1x2
- Short run: x2x2 is fixed at x2=ˉx2=4x2=¯x2=4
- Short run: y=f(x1)=200√x1y=f(x1)=200√x1
Return to scale
- Constant return to scale: f(tx1,tx2)=tf(x1,x2)f(tx1,tx2)=tf(x1,x2) for all tt
- Increasing return to scale: f(tx1,tx2)>tf(x1,x2)f(tx1,tx2)>tf(x1,x2) for all t>1t>1
- Decreasing return to scale: f(tx1,tx2)<tf(x1,x2)f(tx1,tx2)<tf(x1,x2) for all t>1
- Example:
- y=f(x1,x2)=100√x1x2
- f(tx1,tx2)=100√tx1⋅tx2=100√t2x1x2=100t√x1x2=tf(x1,x2)
- Constant return to scale