Long run, short run and return to scale
Summary
Long run and short run
- Short run: At least one factor of production is fixed
- Long run: All factors of production can be varied
- Example
- Production function: \(y=f\left( x_1,x_2 \right)=100\sqrt{x_1x_2}\)
- Short run: \(x_2\) is fixed at \(x_2={\bar{x}}_2=4\)
- Short run: \(y=f\left( x_1 \right)=200\sqrt{x_1}\)
Return to scale
- Constant return to scale: \(f\left( tx_1,tx_2 \right)=tf\left( x_1,x_2 \right)\) for all \(t\)
- Increasing return to scale: \(f\left( tx_1,tx_2 \right)>tf\left( x_1,x_2 \right)\) for all \(t>1\)
- Decreasing return to scale: \(f\left( tx_1,tx_2 \right)<tf\left( x_1,x_2 \right)\) for all \(t>1\)
- Example:
- \(y=f(x_1,x_2)=100\sqrt{x_1x_2}\)
- \(f\left( tx_1,tx_2 \right)=100\sqrt{tx_1⋅tx_2}=100\sqrt{t^2x_1x_2}=100t\sqrt{x_1x_2}=tf(x_1,x_2)\)
- Constant return to scale