Long run, short run and return to scale

Summary

Long run and short run

  • Short run: At least one factor of production is fixed
  • Long run: All factors of production can be varied
  • Example
    • Production function: \(y=f\left( x_1,x_2 \right)=100\sqrt{x_1x_2}\)
    • Short run: \(x_2\) is fixed at \(x_2={\bar{x}}_2=4\)
    • Short run: \(y=f\left( x_1 \right)=200\sqrt{x_1}\)

Return to scale

  • Constant return to scale: \(f\left( tx_1,tx_2 \right)=tf\left( x_1,x_2 \right)\) for all \(t\)
  • Increasing return to scale: \(f\left( tx_1,tx_2 \right)>tf\left( x_1,x_2 \right)\) for all \(t>1\)
  • Decreasing return to scale: \(f\left( tx_1,tx_2 \right)<tf\left( x_1,x_2 \right)\) for all \(t>1\)
  • Example:
    • \(y=f(x_1,x_2)=100\sqrt{x_1x_2}\)
    • \(f\left( tx_1,tx_2 \right)=100\sqrt{tx_1⋅tx_2}=100\sqrt{t^2x_1x_2}=100t\sqrt{x_1x_2}=tf(x_1,x_2)\)
    • Constant return to scale