Problem: The pdf function
Problem
\(X\) is a discrete random variable with range \(x_1=-1, x_2=1, x_3=4\) . Also, \(P\left( X=-1 \right)=1/4\) , \(P\left( X=1 \right)=1/2\) and \(P\left( X=4 \right)=1/4\) . \(f\) is the probability mass function and \(F\) is the cumulative distribution function for \(X\) .
- Find \(f(1)\)
- Find \(f(2)\)
- Find \(P(X≤2)\)
- Find \(P(-1<X≤4)\)
- Show that \(f\left( -1 \right)+f\left( 1 \right)+f\left( 4 \right)=1\) . Explain why this must be the case?
- Find \(F(-1)\)
- Find \(F(1)\)
- Find \(F(0.999)\)
Solution