The statistical formula for b2

Problem

This problem is quite difficult but super useful if you want to practice econometrics algebra.

a) Start from the LRM, \(y_i=β_1+β_2x_i+ε_i\) . We have

\[b_2= \frac{\sum_{i=1}^{n}{ \left( x_i-\bar{x} \right)\left( y_i-\bar{y} \right) }}{\sum_{i=1}^{n}{ {\left( x_i-\bar{x} \right)}^2 }}\]

We also have the following result

\[y_i-\bar{y}=β_2\left( x_i-\bar{x} \right)+ε_i-\bar{ε}\]

Use this result to show that the terms in the sum of the numerator satisfy

\[\left( x_i-\bar{x} \right)\left( y_i-\bar{y} \right)=β_2{\left( x_i-\bar{x} \right)}^2+\left( x_i-\bar{x} \right)\left( ε_i-\bar{ε} \right)\]

b) Use a) to show that

\[\sum_{i=1}^{n}{ \left( x_i-\bar{x} \right)\left( y_i-\bar{y} \right) }=β_2\sum_{i=1}^{n}{ {\left( x_i-\bar{x} \right)}^2 }+\sum_{i=1}^{n}{ \left( x_i-\bar{x} \right)\left( ε_i-\bar{ε} \right) }\]

c) Show that

\[\sum_{i=1}^{n}{ \left( x_i-\bar{x} \right)\left( ε_i-\bar{ε} \right) }=\sum_{i=1}^{n}{ \left( x_i-\bar{x} \right)ε_i }\]

Hint: It is not because \(\bar{ε}\) is zero (because it is not). Try instead

\[\left( x_i-\bar{x} \right)\left( ε_i-\bar{ε} \right)=\left( x_i-\bar{x} \right)ε_i-\left( x_i-\bar{x} \right)\bar{ε}\]

Now sum this, remembering that \(∑\left( x_i-\bar{x} \right)=0\) .

d) Finally show that

\[b_2=β_2+ \frac{\sum_{i=1}^{n}{ \left( x_i-\bar{x} \right)ε_i }}{\sum_{i=1}^{n}{ {\left( x_i-\bar{x} \right)}^2 }}\]

Comment: This is called the statistical formula for \(b_2\) .

Solution

a)

b) From a):

\[\sum_{i=1}^{n}{ \left( x_i-\bar{x} \right)\left( y_i-\bar{y} \right) }=\sum_{i=1}^{n}{ \left( β_2{\left( x_i-\bar{x} \right)}^2+\left( x_i-\bar{x} \right)\left( ε_i-\bar{ε} \right) \right) }\]

Split the sum:

\[\sum_{i=1}^{n}{ \left( β_2{\left( x_i-\bar{x} \right)}^2+\left( x_i-\bar{x} \right)\left( ε_i-\bar{ε} \right) \right) }=\sum_{i=1}^{n}{ β_2{\left( x_i-\bar{x} \right)}^2 }+\sum_{i=1}^{n}{ \left( x_i-\bar{x} \right)\left( ε_i-\bar{ε} \right) }\]

Take out \(β_2\) (constant):

\[\sum_{i=1}^{n}{ β_2{\left( x_i-\bar{x} \right)}^2 }+\sum_{i=1}^{n}{ \left( x_i-\bar{x} \right)\left( ε_i-\bar{ε} \right) }=β_2\sum_{i=1}^{n}{ {\left( x_i-\bar{x} \right)}^2 }+\sum_{i=1}^{n}{ \left( x_i-\bar{x} \right)\left( ε_i-\bar{ε} \right) }\]

c)

\[\left( x_i-\bar{x} \right)\left( ε_i-\bar{ε} \right)=\left( x_i-\bar{x} \right)ε_i-\left( x_i-\bar{x} \right)\bar{ε}\]

Sum:

\[\sum_{i=1}^{n}{ \left( x_i-\bar{x} \right)\left( ε_i-\bar{ε} \right) }=\sum_{i=1}^{n}{ \left( \left( x_i-\bar{x} \right)ε_i-\left( x_i-\bar{x} \right)\bar{ε} \right) }\]

Split the sum:

\[\sum_{i=1}^{n}{ \left( \left( x_i-\bar{x} \right)ε_i-\left( x_i-\bar{x} \right)\bar{ε} \right) }=\sum_{i=1}^{n}{ \left( x_i-\bar{x} \right)ε_i }-\sum_{i=1}^{n}{ \left( x_i-\bar{x} \right)\bar{ε} }\]

\(\bar{ε}\) is constant in the second sum, take it outside:

\[\sum_{i=1}^{n}{ \left( x_i-\bar{x} \right)ε_i }-\bar{ε}\sum_{i=1}^{n}{ \left( x_i-\bar{x} \right) }\]

The second sum is now zero and

\[\sum_{i=1}^{n}{ \left( x_i-\bar{x} \right)\left( ε_i-\bar{ε} \right) }=\sum_{i=1}^{n}{ \left( x_i-\bar{x} \right)ε_i }\]

d) Start from

\[b_2= \frac{\sum_{i=1}^{n}{ \left( x_i-\bar{x} \right)\left( y_i-\bar{y} \right) }}{\sum_{i=1}^{n}{ {\left( x_i-\bar{x} \right)}^2 }}\]

Combine b) and c) and the numerator is:

\[\sum_{i=1}^{n}{ \left( x_i-\bar{x} \right)\left( y_i-\bar{y} \right) }=β_2\sum_{i=1}^{n}{ {\left( x_i-\bar{x} \right)}^2 }+\sum_{i=1}^{n}{ \left( x_i-\bar{x} \right)ε_i }\]

Plug this into the formula for \(b_2\) :

\[b_2= \frac{β_2\sum_{i=1}^{n}{ {\left( x_i-\bar{x} \right)}^2 }+\sum_{i=1}^{n}{ \left( x_i-\bar{x} \right)ε_i }}{\sum_{i=1}^{n}{ {\left( x_i-\bar{x} \right)}^2 }}=\]

(using \( \frac{a+b}{c}= \frac{a}{c}+ \frac{b}{c}\) )

\[= \frac{β_2\sum_{i=1}^{n}{ {\left( x_i-\bar{x} \right)}^2 }}{\sum_{i=1}^{n}{ {\left( x_i-\bar{x} \right)}^2 }}+ \frac{\sum_{i=1}^{n}{ \left( x_i-\bar{x} \right)ε_i }}{\sum_{i=1}^{n}{ {\left( x_i-\bar{x} \right)}^2 }}\]

The sums cancel in the first expression

\[=β_2+ \frac{\sum_{i=1}^{n}{ \left( x_i-\bar{x} \right)ε_i }}{\sum_{i=1}^{n}{ {\left( x_i-\bar{x} \right)}^2 }}\]