Limit of X’ε/√n

Summary

  • Setup:
    • a linear regression model \(y=Xβ+ε\) with a random sample
    • the Gauss-Markov assumptions, \(E\left( ε \right|X)=0\) and \(Var\left( ε \right|X)=σ^2I\)
  • Result:

\[E\left( \frac{1}{\sqrt{n}}X'ε \right)=0\]

  • Result:

\[Var\left( \frac{1}{\sqrt{n}}X'ε \right)=σ^2Σ_{xx'}\]

  • Result:

\[ \frac{1}{\sqrt{n}}X'ε→N\left( 0,σ^2Σ_{xx'} \right)\]