Confidence intervals and α
Problem
Setup: a linear regression model with a random sample, the Gauss-Markov assumptions hold and the errors are normally distributed,
\[y_i=β_1+β_2x_i+ε_i i=1, \ldots ,n\]
Show that the 95% confidence interval for \(β_2\) is a subset of the 99% confidence interval for \(β_2\) .
Hint: Show that if \(c\) is in the 95% C.I. for \(β_2\) then \(c\) must be in the 99% C.I. for \(β_2\) .
Solution
If \(c\) is in the 95% C.I. for \(β_2\) then
\[-SE\left( b_2) \right.⋅t_{0.05/2,n-2}<c<SE\left( b_2) \right.⋅t_{0.05/2,n-2}\]
Since \(t_{0.01/2,n-2}>t_{0.05/2,n-2}\) we have \(-t_{0.01/2,n-2}<-t_{0.05/2,n-2}\) . Thus,
\(SE\left( b_2) \right.⋅t_{0.01/2,n-2}>SE\left( b_2) \right.⋅t_{0.05/2,n-2}\) and \(-SE\left( b_2) \right.⋅t_{0.01/2,n-2}<-SE\left( b_2) \right.⋅t_{0.05/2,n-2}\) . Therefore,
\[-SE\left( b_2) \right.⋅t_{0.01/2,n-2}<c<SE\left( b_2) \right.⋅t_{0.01/2,n-2}\]
The argument is sort of similar to stating that if \(-2<c<2\) then it must follow that \(-3<c<3\) .