Factoring a quadratic expression and completing the square
Summary
- A quadratic expression in \(x\) is an expression in the form
\[ax^2+bx+c\]
- where \(a,b,c\) are constants , \(a≠0\) .
- If the discriminant of the quadratic equation \(ax^2+bx+c=0\) is
- positive: then
\[ax^2+bx+c=a(x-x_1)(x-x_2)\]
- where \(x_1,x_2\) are the distinct roots of the corresponding quadratic equation
- zero : then
\[ax^2+bx+c=a{\left( x-x_1 \right)}^2\]
- where \(x_1\) is the single root of the corresponding quadratic equation
- negative : then the quadratic expression cannot be factored
- Completing the square:
\[ax^2+bx+c=a{\left( x+ \frac{b}{2a} \right)}^2+c- \frac{b^2}{4a}\]