Testing several linear restrictions jointly
Summary
- Setup:
- a linear regression model y=Xβ+ε with a random sample
- ε_i|x_i \sim N(0,σ^2)
- Result: if R is an J×k matrix of parameters then
Rb \sim N(Rβ,RVar\left( b \right)R')
- and
{\left( RVar\left( b \right)R' \right)}^{-1/2}(Rb-Rβ) \sim N(0,I_J)
- and
{\left( Rb-Rβ \right)}'{\left( RVar\left( b \right)R' \right)}^{-1}\left( Rb-Rβ \right) \sim χ_J^2
- and
\frac{{\left( Rb-Rβ \right)}'{\left( R{\left( X'X \right)}^{-1}R' \right)}^{-1}\left( Rb-Rβ \right)}{Js^2} \sim F_{J,n-k}
- Null hypothesis: H_0:Rβ=q where q is a J×1 vector of constants.
- Result: under H_0
\frac{{\left( Rb-q \right)}'{\left( R{\left( X'X \right)}^{-1}R' \right)}^{-1}\left( Rb-q \right)}{Js^2} \sim F_{J,n-k}
- Reject H_0 if
\frac{{\left( Rb-q \right)}'{\left( R{\left( X'X \right)}^{-1}R' \right)}^{-1}\left( Rb-q \right)}{Js^2}>F_{J,n-k,α}
- or reject H_0 if
\frac{{\left( Rb-q \right)}'{\left( R{\left( X'X \right)}^{-1}R' \right)}^{-1}\left( Rb-q \right)}{s^2}>χ_{J,α}^2