Processing math: 0%

Testing several linear restrictions jointly

Summary

  • Setup:
    • a linear regression model y=Xβ+ε with a random sample
    • ε_i|x_i \sim N(0,σ^2)
  • Result: if R is an J×k matrix of parameters then

Rb \sim N(Rβ,RVar\left( b \right)R')

  • and

{\left( RVar\left( b \right)R' \right)}^{-1/2}(Rb-Rβ) \sim N(0,I_J)

  • and

{\left( Rb-Rβ \right)}'{\left( RVar\left( b \right)R' \right)}^{-1}\left( Rb-Rβ \right) \sim χ_J^2

  • and

\frac{{\left( Rb-Rβ \right)}'{\left( R{\left( X'X \right)}^{-1}R' \right)}^{-1}\left( Rb-Rβ \right)}{Js^2} \sim F_{J,n-k}

  • Null hypothesis: H_0:Rβ=q where q is a J×1 vector of constants.
  • Result: under H_0

\frac{{\left( Rb-q \right)}'{\left( R{\left( X'X \right)}^{-1}R' \right)}^{-1}\left( Rb-q \right)}{Js^2} \sim F_{J,n-k}

  • Reject H_0 if

\frac{{\left( Rb-q \right)}'{\left( R{\left( X'X \right)}^{-1}R' \right)}^{-1}\left( Rb-q \right)}{Js^2}>F_{J,n-k,α}

  • or reject H_0 if

\frac{{\left( Rb-q \right)}'{\left( R{\left( X'X \right)}^{-1}R' \right)}^{-1}\left( Rb-q \right)}{s^2}>χ_{J,α}^2