Mathematics for Economists
Chapter 8 : Matrices
By Lund University
This chapter is an introduction to matrix algebra, or more generally, linear algebra. We will look at matrices and the algebra of matrices, that is, how to add and multiply two matrices and the rules that apply when we add and multiply matrices. In this chapter we also look at the transpose of a matrix, the inverse of a matrix and the determinant of a matrix. We also investigated the relationship between matrix algebra and systems of linear equations.
Introduction to matrices
In the first section of this chapter we introduce matrices. We will then look at some special matrices such as diagonal matrices and the identity matrix. We then look at the row and column vectors and vectors in general.
Matrices, definitions
Special matrices
Row- and column vectors
Vectors
Addition, scalar multiplication and transpose
We look at how to add to matrices and when you are allowed to add to matrices (same dimension). It is also possible to multiply and matrix by a scalar and we look at all the algebraic rules for matrix addition and scalar multiplication. In the final lecture we study the transpose of a matrix and related concepts such as symmetric matrices.
Matrix addition and scalar multiplication
Algebraic rules for matrix addition and scalar multiplication
Matrix transpose
Matrices: Problems
Exercises on matrices
Problem: Construct matrix
Problem: Add matrices
Problem: Matrix equality
Problem: Add and subtract matrices
Problem: Linear combinations of 2 column vectors
Problem: Linear combinations of 3 row vectors
Problem: Linear combinations of 2 column vectors backwards
Problem: What can you say about the components of a vector?
Problem: Linear combination of 2 vectors, find the constants
Problem: Matrix transpose
Problem: Symmetric matrices
Matrix multiplication
The fourth section is an entirely devoted to matrix multiplication. We look at under which conditions you are allowed to multiply two matrices, the exact method of how to multiply two matrices and all the rules that apply to matrix multiplication.
Dot product
Matrix multiplication, dimension
Matrix multiplication, computation
Matrix multiplication, rules
Matrix multiplication: Problems
Exercises on matrix multiplication
Problem: Input and output vectors
Problem: Input and output vectors
Problem: Matrix products
Problem: Matrix algebra
Problem: Matrix algebra
Problem: The distributive law for matrices
Problem: Matrix products
Problem: Idempotent matrices
Problem: Transpose matrix expressions
Problem: Find matrix
Matrix inverse, determinants and linear systems
We begin this section by looking at the inverse of a matrix and how to calculate the inverse of a 2 by 2 matrix. We then return to linear systems of equations and see that such systems can be written in matrix notation with a coefficent matrix. We also learn how the solution to a linear system, if it exists and is unique, is related to the inverse of the coefficient matrix. The final topic is determinants. For every square matrix we can calculate its determinant. The determinant is zero if and only if the matrix lacks an inverse.
Matrix Inverse
Linear systems of equations
Linear systems in matrix notation
Determinants
Inverse, determinants and linear systems: Problems
Exercises on matrix inverse, determinants and linear systems