Algebraic rules for matrix addition and scalar multiplication
Summary
- \(A,B,C\) are \(n×m\) matrices, \(α,β\) are scalars.
- \(A+B=B+A\)
- \(αA=Aα\)
- \((A+B)+C=A+(B+C)\)
- \((αβ)A=α(βA)\)
- \((α+β)A=αA+βA\)
- \(α(A+B)=αA+αB\)
- \(αA+βB\) is called a linear combination of \(A\) and \(B\) .