Algebraic rules for matrix addition and scalar multiplication

Summary

  • \(A,B,C\) are \(n×m\) matrices, \(α,β\) are scalars.
  • \(A+B=B+A\)
  • \(αA=Aα\)
  • \((A+B)+C=A+(B+C)\)
  • \((αβ)A=α(βA)\)
  • \((α+β)A=αA+βA\)
  • \(α(A+B)=αA+αB\)
  • \(αA+βB\) is called a linear combination of \(A\) and \(B\) .